int check_palindrome(node_type *root)
{
int ret_val;
if(root)
{
ret_val=check_palindrome(root->next);
if(root->data != hroot->data)
return FALSE;
hroot=hroot->next;
return ret_val;
}
return TRUE;
}
Wednesday, December 8, 2010
LCA : lowest common ancestor
tree_node_type *LowestCommonAncestor( tree_node_type *root , tree_node_type *p , tree_node_type *q) { tree_node_type *l , *r , *temp; if(root==NULL) { return NULL; }
if(root->left==p || root->left==q || root->right ==p || root->right ==q)
{
return root;
}
else
{
l=LowestCommonAncestor(root->left , p , q);
r=LowestCommonAncestor(root->right , p, q);
if(l!=NULL && r!=NULL)
{
return root;
}
else
{
temp = (l!=NULL)?l:r;
return temp;
}
}
}
====================================================
Good and easy solution
Algorithm:
The main idea of the solution is — While traversing Binary Search Tree from top to bottom, the first node n we encounter with value between n1 and n2, i.e., n1 < n < n2 is the Lowest or Least Common Ancestor(LCA) of n1 and n2 (where n1 < n2). So just traverse the BST in pre-order, if you find a node with value in between n1 and n2 then n is the LCA, if it's value is greater than both n1 and n2 then our LCA lies on left side of the node, if it's value is smaller than both n1 and n2 then LCA lies on right side.
Implementation:
#include
#include
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct node
{
int data;
struct node* left;
struct node* right;
};
struct node* newNode(int );
/* Function to find least comman ancestor of n1 and n2 */
int leastCommanAncestor(struct node* root, int n1, int n2)
{
/* If we have reached a leaf node then LCA doesn't exist
If root->data is equal to any of the inputs then input is
not valid. For example 20, 22 in the given figure */
if(root == NULL || root->data == n1 || root->data == n2)
return -1;
/* If any of the input nodes is child of the current node
we have reached the LCA. For example, in the above figure
if we want to calculate LCA of 12 and 14, recursion should
terminate when we reach 8*/
if((root->right != NULL) &&
(root->right->data == n1 || root->right->data == n2))
return root->data;
if((root->left != NULL) &&
(root->left->data == n1 || root->left->data == n2))
return root->data;
if(root->data > n1 && root->data < n2)
return root->data;
if(root->data > n1 && root->data > n2)
return leastCommanAncestor(root->left, n1, n2);
if(root->data < n1 && root->data < n2)
return leastCommanAncestor(root->right, n1, n2);
}
/* Helper function that allocates a new node with the
given data and NULL left and right pointers. */
struct node* newNode(int data)
{
struct node* node = (struct node*)
malloc(sizeof(struct node));
node->data = data;
node->left = NULL;
node->right = NULL;
return(node);
}
====================================================
http://goursaha.freeoda.com/DataStructure/LowestCommonAncestor.html
Find Lowest Common Ancestor in Binary Tree
Question:-You have a Binary Tree and Two node p , q.
You have to find the first common parent of p and q.
tree_node_type *LowestCommonAncestor(
tree_node_type *root , tree_node_type *p , tree_node_type *q)
{
tree_node_type *l , *r , *temp;
if(root==NULL)
{
return NULL;
}
if(root->left==p || root->left==q || root->right ==p || root->right ==q)
{
return root;
}
else
{
l=LowestCommonAncestor(root->left , p , q);
r=LowestCommonAncestor(root->right , p, q);
if(l!=NULL && r!=NULL)
{
return root;
}
else
{
temp = (l!=NULL)?l:r;
return temp;
}
}
}
if(root->left==p || root->left==q || root->right ==p || root->right ==q)
{
return root;
}
else
{
l=LowestCommonAncestor(root->left , p , q);
r=LowestCommonAncestor(root->right , p, q);
if(l!=NULL && r!=NULL)
{
return root;
}
else
{
temp = (l!=NULL)?l:r;
return temp;
}
}
}
====================================================
Good and easy solution
Algorithm:
The main idea of the solution is — While traversing Binary Search Tree from top to bottom, the first node n we encounter with value between n1 and n2, i.e., n1 < n < n2 is the Lowest or Least Common Ancestor(LCA) of n1 and n2 (where n1 < n2). So just traverse the BST in pre-order, if you find a node with value in between n1 and n2 then n is the LCA, if it's value is greater than both n1 and n2 then our LCA lies on left side of the node, if it's value is smaller than both n1 and n2 then LCA lies on right side.
Implementation:
#include
#include
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct node
{
int data;
struct node* left;
struct node* right;
};
struct node* newNode(int );
/* Function to find least comman ancestor of n1 and n2 */
int leastCommanAncestor(struct node* root, int n1, int n2)
{
/* If we have reached a leaf node then LCA doesn't exist
If root->data is equal to any of the inputs then input is
not valid. For example 20, 22 in the given figure */
if(root == NULL || root->data == n1 || root->data == n2)
return -1;
/* If any of the input nodes is child of the current node
we have reached the LCA. For example, in the above figure
if we want to calculate LCA of 12 and 14, recursion should
terminate when we reach 8*/
if((root->right != NULL) &&
(root->right->data == n1 || root->right->data == n2))
return root->data;
if((root->left != NULL) &&
(root->left->data == n1 || root->left->data == n2))
return root->data;
if(root->data > n1 && root->data < n2)
return root->data;
if(root->data > n1 && root->data > n2)
return leastCommanAncestor(root->left, n1, n2);
if(root->data < n1 && root->data < n2)
return leastCommanAncestor(root->right, n1, n2);
}
/* Helper function that allocates a new node with the
given data and NULL left and right pointers. */
struct node* newNode(int data)
{
struct node* node = (struct node*)
malloc(sizeof(struct node));
node->data = data;
node->left = NULL;
node->right = NULL;
return(node);
}
====================================================
http://goursaha.freeoda.com/DataStructure/LowestCommonAncestor.html
Find Lowest Common Ancestor in Binary Tree
Question:-You have a Binary Tree and Two node p , q.
You have to find the first common parent of p and q.
tree_node_type *LowestCommonAncestor(
tree_node_type *root , tree_node_type *p , tree_node_type *q)
{
tree_node_type *l , *r , *temp;
if(root==NULL)
{
return NULL;
}
if(root->left==p || root->left==q || root->right ==p || root->right ==q)
{
return root;
}
else
{
l=LowestCommonAncestor(root->left , p , q);
r=LowestCommonAncestor(root->right , p, q);
if(l!=NULL && r!=NULL)
{
return root;
}
else
{
temp = (l!=NULL)?l:r;
return temp;
}
}
}
hight of binary tree
Height of a Binary Tree
For a tree with just one node, the root node, the height is defined to be 0, if there are 2
levels of nodes the height is 1 and so on. A null tree (no nodes except the null node)
is defined to have a height of –1.
The following height function in pseudocode is defined recursively as discussed in
class. It should be easily to add a C++ version to the program binTree1.cpp.
int height( BinaryTree Node t) {
if t is a null tree
return -1;
hl = height( left subtree of t);
hr = height( right subtree of t);
h = 1 + maximum of hl and hr;
return h;
{
For a tree with just one node, the root node, the height is defined to be 0, if there are 2
levels of nodes the height is 1 and so on. A null tree (no nodes except the null node)
is defined to have a height of –1.
The following height function in pseudocode is defined recursively as discussed in
class. It should be easily to add a C++ version to the program binTree1.cpp.
int height( BinaryTree Node t) {
if t is a null tree
return -1;
hl = height( left subtree of t);
hr = height( right subtree of t);
h = 1 + maximum of hl and hr;
return h;
{
Subscribe to:
Posts (Atom)